

Capabilities and Challenges in CFD: A Perspective from the DoD HPCMP CREATETM-AV Kestrel Development Team

David R. McDaniel, Robert H. Nichols, Scott A. Morton HPCMP CREATETM-AV

Presented by Dr. David R. McDaniel AIAA Aviation17, 5-9 June 2017

Overview

- Introduction
- Kestrel overview
- Snapshot of Kestrel production capabilities
- Challenges and future directions
- Summary

Introduction

Dod HPCMP CREATETM— AV Kestrel

Kestrel is the fixed-wing product of the CREATE™-AV program

- Born from requirements gathered in 2007/8 to address modeling & simulation deficiencies in the DoD acquisition process
- Multi-mesh/multi-solver paradigm
 - Unstructured near-body
 - High order Cartesian off-body
 - Adaptive Mesh Refinement
 - Fast overset connectivity
- Full spectrum of aircraft type
 - Fighter, Bomber, Tanker, Transport, UAV
- Full spectrum of flight conditions/missions
 - Low-speed, transonic, supersonic
 - Cruise, maneuver, take-off/land, refueling, formation flight, store carriage and release, pilot ejection, precision air-drop, and more...

Expanding Footprint of Kestrel Adoption

- Over 500 active license holders (as of May 2017)
- 21 Defense Orgs (Labs, Engineering and Test Centers) actively using Kestrel
- All major manufacturers actively evaluating Kestrel
- 5 Orgs affiliated with Other Federal Agencies using Kestrel to support US Gov't Programs
- Several select US Academic Institutions and the Service Academies using Kestrel to support DoD Programs

Introduction

- Many cost/performance issues in DoD aircraft acquisitions may be traced back to inadequate modeling of multidisciplinary phenomena
 - ...or maybe the "operational application" of the physics capabilities

Kestrel:

- Provide a <u>production</u> multidisciplinary capability for DoD acquisition personnel
- Plan for the change → "manage the chaos"
- Usability, robustness, efficiency, and accuracy are all competing factors

Kestrel Overview

PHPC MODERNIZATION PROGRAM

Kestrel Architecture

Kestrel User Interface (KUI/Carpenter)

- Pre-processing
 - Job setup and validation
 - Mesh manipulation
- Post-processing
 - Tracking file plotting and manipulation
 - Reduced-order model building

Kestrel Run Time Execution Software

- Common Scalable Infrastructure (CSI)
 - Unique event-driven infrastructure
 - Homogenous behavior in the infrastructure, physics capability in components
 - Data Warehouse generic data definition and automatic language translation
- Modular Components
 - Elemental physics capabilities → large degree of use case flexibility
 - Testable code units → may be modified/replaced with confidence
 - Written in Python/C/C++/FORTRAN

Job Setup and Input Validation

 Tension between making the hard job easy to set up and making the easy job hard to setup

Automatic unit conversions and reference/freestream property calculations

Jobview:

- Visual validation of complex job setup
- Assembled body positions
- Unit conversions/scaling
- Position-dependent input locations
- Boundary conditions

Entity-driven setup

Modular Components

KCFD

Unstructured FVM 2nd order **RANS/DDES**

SAMAir

Cartesian FVM 3rd/5th order **RANS/DDES**

ModalSD

2nd order modal structural solver

Sierra/SD

FEM structural solver

FSI

COFFE

Unstructured FEM high-order **RANS**

Aero

CG Loads **Distributed Loads**

MeshMove

MeshManager

OutputManager

TimeManager

ROM-Based

SDK

???

6DOF

Newton/Euler - or -Lagrange (AEDC)

PrescribedMotion

Analytic or arbitrary rigid-body motion

Propulsion

OD Engine Models

Nothing prohibits use of derived or empirical models

Parallelism

- Hierarchy of MPI communicators
- Shared memory for duplicate data
- 1 body per process

Testing and Validation

- Continuous testing model is vital to Kestrel process
- Boldness and confidence to undertake substantial changes to software
- ~3500 unit, ~250 integration, ~25 system tests each night (~17k assertions)
- Automatic Testing System executed every 2 weeks and covers a large range of use cases and flow regimes (~125 separate jobs)

Kestrel Capabilities Snapshot

HPC MODERNIZATION PROGRAM

Flow Solver Performance

Flow Solver Performance

F-16XL Unsteady Solution 20° AOA SA-DDES M=0.242, 10k ft (AIAA 2015-2873)

Transonic F-35 @ 14 deg AOA (AIAA 2015-0551)

No special initializations

Propulsion Integration

F-16
0.6 Mach
20k feet
6 deg AOA
F110-100 0D transient
engine model

30° PLA

85° PLA

C1 Compressor AEDC 16T 8 blade rows 333 blades

A-10 Inlet Distortion Full annulus TF34 fan stage w/ static BC core flow

Near-body/Off-body Solution Capability

- Off-body Cartesian solver supports high order and adaptive mesh refinement
- Near-body unstructured solution coupled via overset

NASA CRM (DPW) Mach 0.85 $C_1 = 0.5$

Multi-body Elastic Effects

Notional Sidewinder Release from Elastic F-16 Mach 0.9, Sea Level, SA+DDES

Multi-body Elastic Effects

Notional Sidewinder Ejection from Elastic F-16 Mach 0.9, Sea Level, SA+DDES

Challenges and Future Directions

Challenges and Future Directions

- Kestrel

 robust and maintainable simulation capability must be balanced with accuracy requirements
- Productionizing high-fidelity physics capabilities while...
 - Minimizing code complexity (small code base)
 - Adapting to future algorithm advancements
 - Adapting to future hardware changes
 - Supporting proprietary / custom applications
- Mention of ongoing Kestrel development activities in the context of these next topics should not be construed as the ideal end-state solution

PPC MODERNIZATION PROGRAM

Multiple Everything

- Necessary to model multiple disciplines at multiple time scales to capture target physics
- Flow regimes of interest moving to opposite ends of the speed spectrum
 - UAV → incompressible, highly-flexible
 - Hypersonics → transition, chemistry, heating

Unsteady, time-accurate simulations

- Example: Full-annulus multistage compressor
 - Billions of grid points required for 0.5% mass flow, 2% total property convergence
 - Time step restricted by rotation rate (on the order of 10⁴ RPM)
 - Pressure waves must transit the distance between inflow/outflow several times
 - Throttle transients and aircraft maneuvers have time scales of seconds

Multiple gas species and chemistry effects

- Efficient perfect gas vs. multiple reacting species and inflow specifications
- Support for custom thermodynamics/chemistry models

Mesh Generation and Refinement

- Need for effective automatic meshing process for general configurations
 - 1st Geometry and Mesh Generation Workshop at AVIATION 2017

Solver-independent strand mesh approach

- Standardized methods for determining when and where adaptive mesh refinement should occur
- Access to underlying geometry for constrained surface mesh movement (CREATE Capstone SDK)

High-Order (Unstructured) Solutions

- Some use cases are out of reach of 2nd order solvers
 - Scalability/memory restricts continued refinement of the mesh
 - Numerical dissipation prevents needed level of solution convergence
- High-order overset can be problematic
- Mesh generation/visualization (tools AND training)
- Kestrel/COFFE

SU/PG FEM, strong convergence, path to high-order, adjoint consistent

Verification of orde^h of accuracy

(High Lift) Turbulence & Transition

- Accurate solutions near/beyond stall are necessary
 - New high-performance aircraft being designed to operate close to stall
 - Turbomachinery blades typically operate near stall
- Transition modeling is key in production environment
 - Transport-equation-type models are a necessity
 - Requirement in hypersonic flows

JAXA Standard Model, Mach 0.172

3rd AIAA Hi-Lift Prediction Workshop (AVIATION 2017)

PIPE MODERNIZATION PROGRAM

Solution Parallelism

- Shared memory compute architectures are dominating
 - Knights Landing processors entering production in DoD HPCMP this summer
- Coarse-grain, hybrid parallelization approaches critical to future scalability
- Kestrel shared memory requirements
 - Low overhead with minimal code complexity (maximum portability)
 - Compatible with persistent data accessible across multiple languages
- Potential cache issues with large mesh partitions
- Look at other parallelism avenues (time, discipline, etc.)

Solution Parallelism

NACA 0012 on 32 processors Ghost elements packed at end Blue = physical cell Red = partition boundary ghost cell Green = physical boundary ghost cell

Fine-grain Partitioning

Coarse-grain Partitioning

"Index distance to neighbor cell"

Reduced-Order Modeling

Effective use of ROMs necessary for disruptive impact to acquisition programs

Automated Maneuver Generation to Minimize Parameter Correlation

Polyomial (Integrated Loads):

$$C_L = f(\alpha, \beta, p, q, r, ...)$$

POD-Based (Distributed Loads):

$$q(x,t) = a_n(t)\phi_n(x)$$

ROM Constructed Using On-Design Data

CFD Model

ROM Used For Integrated/Distributed Aero Predictions at Off-Design Conditions

Summary and Final Thoughts

- Kestrel is a production-quality multidisciplinary simulation tool for fixed-wing air vehicles targeting DoD acquisition professionals
- Kestrel development team must consider usability, robustness, maintainability alongside accuracy
- Three more challenges:
 - 1. Which models/approaches/techniques do we invest in?
 - 2. Symbology, coordinate systems, reference frames, etc., across different disciplines creates confusion
 - 3. Lack of multidisciplinary validation data is debilitating for adoption of multidisciplinary tools

Acknowledgements

- Material presented in this paper is a product of the CREATE[™]-AV element of the Computational Research and Engineering for Acquisition Tools and Environments (CREATE) Program sponsored by the U.S. Department of Defense HPC Modernization Program Office.
- The authors would like to thank the CREATE Management Team, the 96th Test Wing RNCS/RNCE, and AEDC for their financial management and facility support.